課程描述INTRODUCTION
大數(shù)據(jù)培訓(xùn):大數(shù)據(jù)建模與分析挖掘
日程安排SCHEDULE
課程大綱Syllabus
一、課程簡介
.大數(shù)據(jù)建模與分析挖掘技術(shù)已經(jīng)逐步地應(yīng)用到新興互聯(lián)網(wǎng)企業(yè)(如電子商務(wù)網(wǎng)站、搜索引擎、社交網(wǎng)站、互聯(lián)網(wǎng)廣告服務(wù)提供商等)、銀行金融證券企業(yè)、電信運(yùn)營等行業(yè),給這些行業(yè)帶來了一定的數(shù)據(jù)價(jià)值增值作用。
.本次課程面向有一定的數(shù)據(jù)分析挖掘算法基礎(chǔ)的工程師,帶大家實(shí)踐大數(shù)據(jù)分析挖掘平臺的項(xiàng)目訓(xùn)練,系統(tǒng)地講解數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)建模、挖掘模型建立、大數(shù)據(jù)分析與挖掘算法應(yīng)用在業(yè)務(wù)模型中,結(jié)合主流的Hadoop與Spark大數(shù)據(jù)分析平臺架構(gòu),實(shí)現(xiàn)項(xiàng)目訓(xùn)練。
.結(jié)合業(yè)界使用最廣泛的主流大數(shù)據(jù)平臺技術(shù),重點(diǎn)剖析基于大數(shù)據(jù)分析算法與BI技術(shù)應(yīng)用,包括分類算法、聚類算法、預(yù)測分析算法、推薦分析模型等在業(yè)務(wù)中的實(shí)踐應(yīng)用,并根據(jù)講師給定的數(shù)據(jù)集,實(shí)現(xiàn)兩個(gè)基本的日志數(shù)據(jù)分析挖掘系統(tǒng),以及電商(或內(nèi)容)推薦系統(tǒng)引擎。
.本課程基本的實(shí)踐環(huán)境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。
.學(xué)員需要準(zhǔn)備的電腦最好是i5及以上CPU,4GB及以上內(nèi)存,硬盤空間預(yù)留50GB(可用移動硬盤),基本的大數(shù)據(jù)分析平臺所依賴的軟件包和依賴庫等,講師已經(jīng)提前部署在虛擬機(jī)鏡像(VMware鏡像),學(xué)員根據(jù)講師的操作任務(wù)進(jìn)行實(shí)踐。
本課程采用技術(shù)原理與項(xiàng)目實(shí)戰(zhàn)相結(jié)合的方式進(jìn)行教學(xué),在講授原理的過程中,穿插實(shí)際的系統(tǒng)操作,本課程講師也精心準(zhǔn)備的實(shí)際的應(yīng)用案例供學(xué)員動手訓(xùn)練。
三、培訓(xùn)人群
1.大數(shù)據(jù)分析應(yīng)用開發(fā)工程師
2.大數(shù)據(jù)分析項(xiàng)目的規(guī)劃咨詢管理人員
3.大數(shù)據(jù)分析項(xiàng)目的IT項(xiàng)目高管人員
4.大數(shù)據(jù)分析與挖掘處理算法應(yīng)用工程師
5.大數(shù)據(jù)分析集群運(yùn)維工程師
三、培訓(xùn)目標(biāo)
1.本課程讓學(xué)員充分掌握大數(shù)據(jù)平臺技術(shù)架構(gòu)、大數(shù)據(jù)分析的基本理論、大數(shù)據(jù)分析挖掘應(yīng)用實(shí)戰(zhàn)技能、國內(nèi)外主流的大數(shù)據(jù)分析與BI商業(yè)智能分析解決方案、以及大數(shù)據(jù)分析在搜索引擎、廣告服務(wù)推薦、電商數(shù)據(jù)分析、金融客戶分析方面的應(yīng)用案例。
2.本課程強(qiáng)調(diào)主流的大數(shù)據(jù)分析挖掘算法技術(shù)的應(yīng)用和分析平臺的實(shí)施,讓學(xué)員掌握主流的基于大數(shù)據(jù)Hadoop和Spark、R的大數(shù)據(jù)分析平臺架構(gòu)和實(shí)際應(yīng)用,并用結(jié)合實(shí)際的生產(chǎn)系統(tǒng)案例進(jìn)行教學(xué),掌握基于Hadoop大數(shù)據(jù)平臺的數(shù)據(jù)挖掘和數(shù)據(jù)倉庫分布式系統(tǒng)平臺應(yīng)用,以及商業(yè)和開源的數(shù)據(jù)分析產(chǎn)品加上Hadoop平臺形成大數(shù)據(jù)分析平臺的應(yīng)用剖析。
3.讓學(xué)員掌握業(yè)界最流行的基于Hadoop與Spark的大數(shù)據(jù)分析挖掘平臺,深入講解業(yè)界成熟的大數(shù)據(jù)分析挖掘與BI平臺的實(shí)踐應(yīng)用,并以客戶分析系統(tǒng)、日志分析和電商推薦系統(tǒng)為案例,串聯(lián)常用的數(shù)據(jù)挖掘技術(shù)進(jìn)行應(yīng)用教學(xué)。
四、培訓(xùn)特色
定制授課+ 實(shí)戰(zhàn)案例訓(xùn)練+ 互動咨詢討論,共3天
(說明:講師會提供虛擬機(jī)鏡像,并把Hadoop,Spark等系統(tǒng)提前部署在虛擬機(jī)中,分析挖掘平臺構(gòu)建在Hadoop與Spark之上,學(xué)員自帶筆記本,運(yùn)行虛擬機(jī),并利用同樣的鏡像啟動多臺虛擬機(jī),構(gòu)建實(shí)驗(yàn)集群,鏡像會提前給學(xué)員)
五、師資介紹
.鐘老師,男,博士畢業(yè)于中國科學(xué)院,獲工學(xué)博士學(xué)位(計(jì)算機(jī)系統(tǒng)結(jié)構(gòu)方向),曾在國內(nèi)某高校和某大型通信企業(yè)工作過,目前在中國科學(xué)院某研究所工作,高級工程師,副研究員,課題組長,團(tuán)隊(duì)成員二十余人。大數(shù)據(jù)、云計(jì)算系列課程建設(shè)與教學(xué)專家,新技術(shù)課程開發(fā)組長。近八年來帶領(lǐng)團(tuán)隊(duì)主要從事大數(shù)據(jù)管理與高性能分析處理(Hadoop、Spark、Storm)、大數(shù)據(jù)倉庫(HIVE)和實(shí)時(shí)數(shù)據(jù)倉庫(SparkSQL、Shark),大數(shù)據(jù)建模挖掘與機(jī)器學(xué)習(xí)(Mahout、MLib、Oryx、Pentaho BI、SAS、SPSS、R等)、MPP并行數(shù)據(jù)倉庫(Greenplum etc)、NoSQL與NewSQL分布式數(shù)據(jù)庫(Hbase、MongoDB、Cassandra etc)、(移動)電子商務(wù)平臺、大數(shù)據(jù)搜索平臺(ElasticSearch、Solr、Lucene等)、云計(jì)算與虛擬化(OpenStack,VMware,XenServer,CloudStack,KVM,Docker,SaaS服務(wù))、云存儲系統(tǒng)、Swift對象存儲系統(tǒng)、網(wǎng)絡(luò)GIS地圖服務(wù)器、互聯(lián)網(wǎng)+在線教育云平臺方面的項(xiàng)目研發(fā)與管理工作。
六、頒發(fā)證書
參加相關(guān)培訓(xùn)并通過考試的學(xué)員,可以獲得:
1.工業(yè)和信息化部頒發(fā)的-大數(shù)據(jù)挖掘高級工程師職業(yè)技能證書。該證書可作為專業(yè)技術(shù)人員職業(yè)能力考核的證明,以及專業(yè)技術(shù)人員崗位聘用、任職、定級和晉升職務(wù)的重要依據(jù)。
注:請學(xué)員帶一寸彩照2張(背面注明姓名)、身份證復(fù)印件一張。
七、詳細(xì)大綱與培訓(xùn)內(nèi)容
時(shí)間.內(nèi)容提要.授課詳細(xì)內(nèi)容.實(shí)踐訓(xùn)練
第一天.業(yè)界主流的數(shù)據(jù)倉庫工具和大數(shù)據(jù)分析挖掘工具.1.業(yè)界主流的基于Hadoop和Spark的大數(shù)據(jù)分析挖掘項(xiàng)目解決方案
2.業(yè)界數(shù)據(jù)倉庫與數(shù)據(jù)分析挖掘平臺軟件工具
3.Hadoop數(shù)據(jù)倉庫工具Hive
4.Spark實(shí)時(shí)數(shù)據(jù)倉庫工具SparkSQL
5.Hadoop數(shù)據(jù)分析挖掘工具M(jìn)ahout
6.Spark機(jī)器學(xué)習(xí)與數(shù)據(jù)分析挖掘工具M(jìn)Llib
7.大數(shù)據(jù)分析挖掘項(xiàng)目的實(shí)施步驟.配置數(shù)據(jù)倉庫工具Hadoop Hive和SparkSQL
部署數(shù)據(jù)分析挖掘工具Hadoop Mahout和Spark MLlib
.大數(shù)據(jù)分析挖掘項(xiàng)目的數(shù)據(jù)集成操作訓(xùn)練.1.日志數(shù)據(jù)解析和導(dǎo)入導(dǎo)出到數(shù)據(jù)倉庫的操作訓(xùn)練
2.從原始搜索數(shù)據(jù)集中抽取、集成數(shù)據(jù),整理后形成規(guī)范的數(shù)據(jù)倉庫
3.數(shù)據(jù)分析挖掘模塊從大型的集中式數(shù)據(jù)倉庫中訪問數(shù)據(jù),一個(gè)數(shù)據(jù)倉庫面向一個(gè)主題,構(gòu)建兩個(gè)數(shù)據(jù)倉庫
4.同一個(gè)數(shù)據(jù)倉庫中的事實(shí)表數(shù)據(jù),可以給多個(gè)不同類型的分析挖掘任務(wù)調(diào)用
5.去除噪聲.項(xiàng)目數(shù)據(jù)集加載ETL到Hadoop Hive數(shù)據(jù)倉庫并建立多維模型
.基于Hadoop的大型數(shù)據(jù)倉庫管理平臺—HIVE數(shù)據(jù)倉庫集群的多維分析建模應(yīng)用實(shí)踐.
6.基于Hadoop的大型分布式數(shù)據(jù)倉庫在行業(yè)中的數(shù)據(jù)倉庫應(yīng)用案例
7.Hive數(shù)據(jù)倉庫集群的平臺體系結(jié)構(gòu)、核心技術(shù)剖析
8.Hive Server的工作原理、機(jī)制與應(yīng)用
9.Hive數(shù)據(jù)倉庫集群的安裝部署與配置優(yōu)化
10.Hive應(yīng)用開發(fā)技巧
11.Hive SQL剖析與應(yīng)用實(shí)踐
12.Hive數(shù)據(jù)倉庫表與表分區(qū)、表操作、數(shù)據(jù)導(dǎo)入導(dǎo)出、客戶端操作技巧
13.Hive數(shù)據(jù)倉庫報(bào)表設(shè)計(jì)
14.將原始的日志數(shù)據(jù)集,經(jīng)過整理后,加載至Hadoop + Hive數(shù)據(jù)倉庫集群中,用于共享訪問.利用HIVE構(gòu)建大型數(shù)據(jù)倉庫項(xiàng)目的操作訓(xùn)練實(shí)踐
.Spark大數(shù)據(jù)分析挖掘平臺實(shí)踐操作訓(xùn)練.15.Spark大數(shù)據(jù)分析挖掘平臺的部署配置
16.Spark數(shù)據(jù)分析庫MLlib的開發(fā)部署
17.Spark數(shù)據(jù)分析挖掘示例操作,從Hive表中讀取數(shù)據(jù)并在分布式內(nèi)存中運(yùn)行.
第二天.聚類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用.18.聚類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:
a).Canopy聚類(canopy clustering)
b).K均值算法(K-means clustering)
c).模糊K均值(Fuzzy K-means clustering)
d).EM聚類,即期望*化聚類(Expectation Maximization)
e).以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場景中的應(yīng)用案例。
19.Spark聚類分析算法程序示例.基于Spark MLlib的聚類分析算法,實(shí)現(xiàn)日志數(shù)據(jù)集中的用戶聚類
.分類分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用. 20.分類分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用, 包括:
f).Spark決策樹算法實(shí)現(xiàn)
g).邏輯回歸算法(logistics regression)
h).貝葉斯算法(Bayesian與Cbeyes)
i).支持向量機(jī)(Support vector machine)
j).以上算法在Spark MLlib中的實(shí)現(xiàn)原理和實(shí)際場景中的應(yīng)用案例。
21.Spark客戶資料分析與給用戶貼標(biāo)簽的程序示例
22.Spark實(shí)現(xiàn)給商品貼標(biāo)簽的程序示例
23.Spark實(shí)現(xiàn)用戶行為的自動標(biāo)簽和深度技術(shù).基于Spark MLlib的分類分析算法模型與應(yīng)用操作
.關(guān)聯(lián)分析建模與挖掘算法的實(shí)現(xiàn)原理和技術(shù)應(yīng)用. 24.預(yù)測、推薦分析建模與算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:
k).Spark頻繁模式挖掘算法(parallel FP Growth Algorithm)應(yīng)用
l).Spark關(guān)聯(lián)規(guī)則挖掘(Apriori)算法及其應(yīng)用
m).以上算法在Spark MLib中的實(shí)現(xiàn)原理和實(shí)際場景中的應(yīng)用案例。
25.Spark關(guān)聯(lián)分析程序示例.基于Spark MLlib的關(guān)聯(lián)分析操作
第三天.推薦分析挖掘模型與算法技術(shù)應(yīng)用.26.推薦算法原理及其在Spark MLlib中的實(shí)現(xiàn)與應(yīng)用,包括:
a).Spark協(xié)同過濾算法程序示例
b).Item-based協(xié)同過濾與推薦
c).User-based協(xié)同過濾與推薦
d).交叉銷售推薦模型及其實(shí)現(xiàn).推薦分析實(shí)現(xiàn)步驟與操作(重點(diǎn))
.回歸分析模型與預(yù)測算法.27.利用線性回歸(多元回歸)實(shí)現(xiàn)訪問量預(yù)測
28.利用非線性回歸預(yù)測成交量和訪問量的關(guān)系
29.基于R+Spark實(shí)現(xiàn)回歸分析模型及其應(yīng)用操作
30.Spark回歸程序?qū)崿F(xiàn)異常點(diǎn)檢測的程序示例.回歸分析預(yù)測操作例子
.圖關(guān)系建模與分析挖掘及其鏈接分析和社交分析操作. 31.利用Spark GraphX實(shí)現(xiàn)網(wǎng)頁鏈接分析,計(jì)算網(wǎng)頁重要性排名
32.實(shí)現(xiàn)信息傳播的社交關(guān)系傳遞分析,互聯(lián)網(wǎng)用戶的行為關(guān)系分析任務(wù)的操作訓(xùn)練.圖數(shù)據(jù)的分析挖掘操作,實(shí)現(xiàn)微博數(shù)據(jù)集的社交網(wǎng)絡(luò)建模與關(guān)系分析
.神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)算法模型及其應(yīng)用實(shí)踐.33.神經(jīng)網(wǎng)絡(luò)算法Neural Network的實(shí)現(xiàn)方法和挖掘模型應(yīng)用
34.基于人工神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)的訓(xùn)練過程
a).傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法
b).Deep Learning的訓(xùn)練方法
35.深度學(xué)習(xí)的常用模型和方法
a).CNN(Convolutional Neural Network)卷積神經(jīng)網(wǎng)絡(luò)
b).RNN(Recurrent Neural Network)循環(huán)神經(jīng)網(wǎng)絡(luò)模型
c).Restricted Boltzmann Machine(RBM)限制波爾茲曼機(jī)
36.基于Spark的深度學(xué)習(xí)算法模型庫的應(yīng)用程序示例.基于Spark或TensorFlow神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)庫實(shí)現(xiàn)文本與圖片數(shù)據(jù)挖掘
.項(xiàng)目實(shí)踐.37.日志分析系統(tǒng)與日志挖掘項(xiàng)目實(shí)踐
a).Hadoop,Spark,ELK技術(shù)構(gòu)建日志數(shù)據(jù)倉庫
b).互聯(lián)網(wǎng)微博日志分析系統(tǒng)項(xiàng)目
38.推薦系統(tǒng)項(xiàng)目實(shí)踐
a).電影數(shù)據(jù)分析與個(gè)性化推薦關(guān)聯(lián)分析項(xiàng)目.項(xiàng)目數(shù)據(jù)集和詳細(xì)的實(shí)驗(yàn)指導(dǎo)手冊由講師提供
.培訓(xùn)總結(jié).39.項(xiàng)目方案的課堂討論,討論實(shí)際業(yè)務(wù)中的分析需求,剖析各個(gè)環(huán)節(jié)的難點(diǎn)、痛點(diǎn)、瓶頸,啟發(fā)出解決之道;完成講師布置的項(xiàng)目案例,鞏固學(xué)過的大數(shù)據(jù)分析挖掘處理平臺技術(shù)知識以及應(yīng)用技能.討論交流
.兩個(gè)完整的項(xiàng)目任務(wù)和實(shí)踐案例(重點(diǎn)).1.日志分析建模與日志挖掘項(xiàng)目實(shí)踐
a)Hadoop,Spark,并結(jié)合ELK技術(shù)構(gòu)建日志分析系統(tǒng)和日志數(shù)據(jù)倉庫
b)互聯(lián)網(wǎng)微博日志分析系統(tǒng)項(xiàng)目
2.推薦系統(tǒng)項(xiàng)目實(shí)踐
a)電影數(shù)據(jù)分析與個(gè)性化推薦關(guān)聯(lián)分析項(xiàng)目
b)電商購物籃分析項(xiàng)目
Hadoop,Spark,可結(jié)合Oryx分布式集群在個(gè)性化推薦和精準(zhǔn)營銷項(xiàng)目。.項(xiàng)目的階段性步驟貫穿到三天的培訓(xùn)過程中,第三天完成整個(gè)項(xiàng)目的原型
轉(zhuǎn)載:http://xvaqeci.cn/gkk_detail/23556.html
已開課時(shí)間Have start time
IT相關(guān)內(nèi)訓(xùn)
- 電力信息化:價(jià)值和建設(shè)分析 劉宇佳
- 大模型技術(shù)與應(yīng)用培訓(xùn) 葉梓
- 信息安全風(fēng)險(xiǎn)評估與加固技能 張勝生
- Fine BI 數(shù)據(jù)分析與 張曉如
- 滲透測試與攻防實(shí)戰(zhàn)高級課程 張勝生
- 網(wǎng)安管理崗培訓(xùn) 張勝生
- 軟件安全意識加強(qiáng)與技能提高 張勝生
- 互聯(lián)網(wǎng)新技術(shù)在銀行的應(yīng)用 武威
- 云計(jì)算的應(yīng)用領(lǐng)域和實(shí)踐 武威
- CISSP認(rèn)證培訓(xùn)課程 張勝生
- IT崗位數(shù)智化能力提升路徑 甄文智
- Python高效辦公自動化 張曉如